
CORBAservices: Common Object Services Specification 9-1

Relationship Service Specification 9

9.1 Service Description

Distributed objects are frequently used to model entities in the real world. As such,
distributed objects do not exist in isolation. They are related to other objects.

Consider some examples of real world entities and relationships:

• A person owns cars; a car is owned by one or more persons.

• A company employs one or more persons; a person is employed by one or more
companies.

• A document contains figures; a figure is contained in a document.

• A document references a book; a book is referenced by one or more documents.

• A person checks out books from libraries. A library checks out books to people.
A book is checked out by a person from a library.

These examples demonstrate several relationships:

• Ownership relationships between people and cars

• Employment relationships between companies and people

• Containment relationships between documents and figures

• Reference relationships between books and documents

• Check out relationships between people, books and libraries.

Such relationships can be characterized along a number of dimensions:

Type
Related entities and the relationships themselves are typed. In the examples,
employment is an relationship defined between people and companies. The type of
the relationship constrains the types of entities in the relationship; a company
cannot employ a monkey since a monkey is not a person. Furthermore, employment
is distinct from other relationships between people and companies.

9-2 CORBAservices: Common Object Services Specification

9

The roles of entities in relationships
A relationship is defined by a set of roles that entities have. In an employment
relationship, a company plays an employer role and a person plays an employee
role.

A single entity can have different roles in distinct relationships. Notice that a person
can play the owner role in an ownership relationship and the employee role in an
employment relationship.

Degree
Degree refers to the number of required roles in a relationship. The check out
relationship is a ternary relationship; it has three roles: the borrower role, the lender
role and the material role. A person plays the borrower role, a library plays the
lender role and a book plays the material role. Ownership, employment,
containment and reference, on the other hand, are of degree 2, or binary
relationships.

Cardinality
For each role in a relationship type, the maximum cardinality specifies the
maximum number of relationships that may involve that role.

The containment relationship is a many-to-one relationship; a document contains
many figures; a figure is contained in exactly one document. A many-to-many
relationship is between two sets of entities. The ownership example is a many-to-
many relationship; a person can own multiple cars; a car can have multiple owners.
The check out relationship is a many-to-one-to-many relationship. A person can
check out many books from many libraries. A book is checked out by one person
from one library and a library can loan many books to many people.

Relationship Semantics
Relationships often have relationship-specific semantics; that is they define
operations and attributes. For example, job title is an attribute of the employment
relationship, while it is not an attribute of an ownership relationship. Similarly, due
date is an attribute of the check out relationship.

For more discussion on object-oriented modeling and design with relationships, see
[2].

9.1.1 Key Features of the Relationship Service

• The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service defines two
new kinds of objects: relationships and roles. A role represents a CORBA object
in an relationship. A relationship is created by passing a set of roles to a
relationship factory.

• Relationships of arbitrary degree can be defined.

• Type and cardinality constraints can be expressed and checked. Exceptions are
raised when cardinality and type constraints are violated. The Relationship
Service does not define a new type system. Instead, the IDL type system is used
to represent relationship and role types. This allows the service to leverage
CORBA solutions for type federation.

Relationship Service: v1.0 Service Description March 1995 9-3

9

• The Relationship interface can be extended to add relationship specific attributes
and operations. Similarly, the Role interface can be extended to add role specific
attributes and operations.

• The Relationship Service defines three levels of service: base, graph, and specific.

• The base level defines relationships and roles.

• When objects are related, they form graphs of related objects. The graph level
extends the base level service with nodes and traversal objects. Traversal objects
iterate through the edges of a graph. Traversals are useful in implementing
compound operations on graphs, among other things.

• Specific relationships are defined by the third level.

4. A conforming Relationship Service implementation must implement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

• Appendix A, which contains an addendum to the Life Cycle Service, defines
operations to copy, move, and remove graphs of related objects.

• The Relationship Service requires a notion of object identify. As such, it defines
a simple, efficient mechanism for supporting object identity in a heterogeneous,
CORBA-based environment. We believe the mechanism to be of general utility
for other services.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references; role objects
can be collocated with their objects and need not depend on a centralized
repository of relationship information. As such, navigating a relationship can be a
local operation.

• The Relationship Service allows so-called immutable objects to be related. There
are no required interfaces that objects being related must support. As such,
objects whose state and implementation were defined prior to the definition of the
Relationship Service can be related objects.

• The Relationship Service allows graphs of related objects to be traversed without
activating related objects.

• The Relationship Service is extensible. Programmers can define additional
relationships.

9.1.2 The Relationship Service vs. CORBA Object References

CORBA: Common Object Request Broker Architecture and Specification defines object
references that clients use to issue requests on objects. Object references can be stored
persistently. When is it appropriate to use object references and when is it appropriate
to use the Relationship Service?

The Relationship Service is appropriate to use when an application needs any of the
following capabilities that are not available with CORBA object references:

9-4 CORBAservices: Common Object Services Specification

9

Relationships that Are Multidirectional

When objects are related using the Relationship Service, the relationship can be
navigated from any role to any other role. The service maintains the relationship
between related objects. CORBA object references, on the other hand, are
unidirectional. Objects that posses CORBA object references to each other can only
do so in an ad hoc fashion; there is no way to maintain and manipulate the
relationship between the objects.

Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exported
to third parties. This allows third parties to manipulate the relationship. For example
a third party could create, destroy or navigate the relationship. Third parties cannot
manipulate object references.

Traversals that Are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of related
objects. Interfaces are defined by the Relationship Service to support traversing the
graph.

Relationships and Roles that Can Be Extended with Attributes and
Behavior

Relationships have relationship-specific semantics. For example, the employment
relationship has a job title attribute. Since relationships and roles are objects with well-
defined OMG IDL interfaces, they can be extended through OMG IDL inheritance to
add such relationship-specific attributes and operations.

9.1.3 Resolution of Technical Issues

Modeling and Relationship Semantics

An application designer models a problem as a set of objects and the relationships
between those objects. Using OMG IDL, the application designer directly represents
the objects of the model. Using the Relationship Service, the application designer
directly represents the roles and relationships of the model.

The Relationship and Role interfaces can be extended using OMG IDL inheritance to
add relationship and role specific attributes and operations. For example, a designer
might define the employment relationship to have an operation returning a job title.

Relationship Service: v1.0 Service Description March 1995 9-5

9

Managing Relationships

The RelationshipFactory interface defines an operation to create a relationship, given a
set of roles. The Role and Relationship interfaces define operations to delete and
navigate relationships between objects.

Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operation can raise a
RelatedObjectTypeError exception. This allows implementations of the Role
interface to place further constraints on the type of the related objects. For example, an
EmployedByRole can ensure related objects are people. An attempt to have it represent
a monkey would raise a RelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create operation can raise a
RoleTypeError exception. This allows implementations of the Relationship
interface to put constraints on the type of the roles. For example an Employment
relationship can ensure there is an EmployerRole and an EmployeeRole.

The RelationshipFactory::create operation can also raise a DegreeError
exception. This ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A role
can raise a MaxCardinalityExceeded exception and refuse to participate in a
relationship if its maximum cardinality would be exceeded. Roles define an operation
to ask if their minimum cardinality constraint is being met.

Referential Integrity

If the Relationship Service is used in an environment supporting transactions, strict
referential integrity is achieved. That is, if an related object refers to another (via a
relationship), then the other related object will also refer to it. Without transactions,
strict referential integrity cannot be achieved since a failure during execution of the
relationship construction protocol could cause a dangling reference.

Relationships and Roles as First Class Objects

Our design defines both relationships and roles as first class objects. This is extremely
important because it encapsulates and abstracts the state to represent the relationship,
allows third party manipulation of the relationship and allows the roles and
relationships themselves to support operations and attributes.

9-6 CORBAservices: Common Object Services Specification

9

Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating
relationships component-by-component. These building block operations can be used
by a higher-level service, such as a query service.

Efficiency Considerations

Our design has several features that allow for highly optimized implementations.
Performance optimizations are achieved by clustering and/or caching of connection
information.

Clients can cluster related objects and their roles by their selection of factories.

Our design defines the containment relationship logically. It does not imply physical
clustering of state or execution, However, it serves as a good hint to implementations
for clustering. An environment can choose to cluster containers and contained objects.

The get_other_related_object operation can be implemented to cache remote
related objects. The cached information is immutable; once a relationship is
established, the roles and related objects will not change.

Relationship Service: v1.0 Service Structure March 1995 9-7

9

9.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchy of Relationship Service
interfaces and explains the main purpose of each interface.

9.2.1 Levels of Service

The Relationship Service defines three levels of service: base relationships, graphs of
related objects, and specific relationships. The specification is organized around these
levels.

Level One: Base Relationships

The Relationship and Role interfaces define the base Relationship Service.
Figure 9-1 illustrates two instances of the containment relationship. The document
plays the container role; the figure and the logo play the containee role.

The diamond is an object supporting the Relationship interface. The small circles
are objects supporting the Role interface.

Figure9-1 Base relationships.

Roles represent objects in relationships. Roles have a maximum cardinality. As
illustrated, the container role can be involved in many instances of a relationship.
The containee roles can only be involved in a single instance of a relationship.

figure

logo

document

9-8 CORBAservices: Common Object Services Specification

9

Figure 9-2 illustrates the navigation functionality of relationships; for example the
arrow between a role and another role indicates it is possible to navigate from one
role to another. The arrow does not, however, indicate that the object reference to
the other role is necessarily stored by the role.

Figure9-2 Navigation functionality of base relationships

Table 9-1 lists the interfaces to support relationships and roles. Section 9 specifies
the interfaces in detail.

Level Two: Graphs of Related Objects

Distributed objects do not exist in isolation. They are connected together. Objects
connected together form graphs of related objects. The Relationship Service defines
the Traversal interface. The Traversal interface defines an operation to traverse a
graph. The traversal object cooperates with extended roles supporting the
CosGraphs::Role interface and objects supporting the Node interface.

Figure 9-3 illustrates a graph of related objects. The folder, the figure, the logo and
the book all support the Node interface. The small circles are roles supporting the
CosGraphs::Role interface.

.

figuredocument

Relationship Service: v1.0 Service Structure March 1995 9-9

9

Figure9-3 An example graph of related objects.

Table 9-3 lists the interfaces to support graphs of related objects. Section 9
specifies the interfaces in detail.

Level Three: Specific Relationships

Containment and reference are two important relationships. The Relationship Service
defines these two binary relationships.

Table 9-4 and Table 9-5 list the interfaces defining specific relationships. Section 9
specifies the interfaces in detail.

figure

logo

folder

person

library

document

book

containment

reference

check_out

9-10 CORBAservices: Common Object Services Specification

9

9.2.2 Hierarchy of Relationship Interface

The relationship interfaces are arranged into the interface hierarchy illustrated in
Figure 9-4.

Figure9-4 Relationship interface hierarchy

9.2.3 Hierarchy of Role Interface

The role interfaces are arranged into the interface hierarchy illustrated in Figure 9-5.

Figure9-5 Role interface hierarchy

The Role interface defines operations to efficiently navigate relationships between
related objects.

The CosGraphs::Role interface defines an operation to return the edges that involve
the role. This is used by the traversal service defined at the graph level.

Finally, ContainsRole, ContainedInRole, ReferencesRole and ReferencedByRole are
specific roles for two important relationships: containment and reference.

Relationship

Containment Reference

CosRelationships module

specific relationships

(Base level)

CosRelationships::Role

CosGraphs::Role

ContainsRole

ContainedInRole

ReferencesRole

ReferencedByRole

CosRelationships module

CosGraphs module

specific relationships

(Base level)

(graph level)

Relationship Service: v1.0 Service Structure March 1995 9-11

9

9.2.4 Interface Summary

The Relationship Service defines interfaces to support the functionality described in
section 9.2.

Table 9-1 through Table 9-5 give high level descriptions of the Relationship Service
interfaces. Sections 9 through 9 describe the interfaces in detail.

Table 9-1 Interfaces defined in the CosObjectIdentity module

Interface Purpose IPrimary Clients

CosObjectIdentity::

IdentifiableObject To determine if two objects
are identical.

There are many clients. The
graph level of the
Relationship Service is one.

Table 9-2 Interfaces defined in the CosRelationships module

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of a
relationship type.

Clients that navigate
between related objects.

RelationshipFactory Supports the creation of
relationships.

Clients establishing
relationships.

Role Defines navigation
operations for relationships.
Implements type and
cardinality constraints.

Clients that navigate
between related objects.
Relationship factories.

RoleFactory Supports the creation of
roles.

Objects participating in
relationships.

RelationshipIterator Iterates the relationships in
which a particular role object
participates.

Clients that navigate
relationships.

9-12 CORBAservices: Common Object Services Specification

9

Table 9-3 Interfaces defined in the CosGraphs module

Interface Purpose Primary Client(s)

CosGraphs::

Traversal Defines an operation to
traverse a graph, given a
starting node and traversal
criteria.

Clients that want a standard
service to traverse graphs.

TraversalFactory Supports the creation of a
traversal object.

Clients that want a standard
service to traverse graphs.

TraversalCriteria Provides navigation
behavior between nodes.

Traversal implementations.

Role Extends the
CosRelationships::Role
interface to return edges

Clients that traverse graphs
of related objects.

EdgeIterator Returns additional edges
from a role.

Clients that traverse graphs
of related objects.

Node Defines operations for a
related object to reveal its
roles.

Clients that traverse graphs
of related objects.

NodeFactory Supports the creation of
nodes.

Clients that create nodes in
graphs.

Table 9-4 Interfaces defined in the CosContainment module

Interface Purpose Primary Client(s)

CosContainment::

Relationship one-to-many relationship Clients that depend on
Containment relationship
type.

ContainsRole Represents an object that
contains other objects.

Clients that navigate
containment relationships
between objects.

ContainedInRole Represents an object that is
contained in other objects.

Clients that navigate
containment relationships
between objects.

Relationship Service: v1.0 The Base Relationship Model March 1995 9-13

9

9.3 The Base Relationship Model

The base level of the Relationship Service defines interfaces that support relationships
between two or more CORBA objects. Objects that participate in a relationship are
called related objects. Relationships that share the same semantics form relationship
types. A relationship is an instance of a relationship type and has an identity.

Each related object is connected with the relationship via a role. Roles are objects
which characterize a related object‘s participation in a relationship type. Role types are
used for expressing the role´s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to a role. Degree represents
the number of roles in a relationship. All characteristics are expressed by
corresponding IDL interfaces. Relationship and role types are built by subtyping the
Relationship and Role interfaces.

Figure 9-6 gives a graphical representation of a simple relationship type. It illustrates
that documents reference books. Documents are in the ReferencesRole and books are in
the ReferencedByRole. Documents, reference, the roles and books are all types; there
are interfaces (written in OMG IDL) for all five.

Table 9-5 Interfaces defined in the CosReference module

Interface Purpose Primary Clients

CosReference::

Relationship many-to-many relationship Clients that depend on the
reference relationship type.

ReferencesRole Represents an object that
references other objects.

Clients that navigate
reference relationships
between objects.

ReferencedByRole Represents an object that is
referenced by other objects.

Clients that navigate
reference relationships
between objects.

9-14 CORBAservices: Common Object Services Specification

9

Figure9-6 Simple relationship type: documents reference books

Figure 9-7, on the other hand, gives a graphical representation of an instance of a
relationship type. It illustrates that “my document”, an instance of Document,
references “War and Peace”, an instance of Book.1

Figure9-7 Simple relationship instance: my document references the book “War and Peace“

9.3.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference
relationship of Figure 9-6 has an attribute indicating the date the reference from the
document to the book was established.

1.Most of the figures in this specification represent instances of related objects, roles and relationships.
Figures describing object and relationship type are clearly marked.

Document
ReferencesRole

ReferencedByRole
Book

Reference Relationship
attribute date_of_reference

my doc
ReferencesRole

ReferencedByRole

War and Peace

Reference Relationship
May 30, 1994

Relationship Service: v1.0 The Base Relationship Model March 1995 9-15

9

Rationale

If relationships are not allowed to define attributes and operations, they will have to be
assigned to one of the related objects. This approach is prone to misunderstandings and
inconsistencies. The approach to define an artificial related object, which then carries
the attributes, is equally unsatisfactory.

The date attribute of the example of Figure 9-7 is clearly an attribute of the
relationship, not one of related objects. It cannot be an attribute of “my document”
since “my document” can reference many books on different dates. Similarly, it cannot
be an attribute of “War and Peace” since “War and Peace” can be referenced by many
books on different dates.

9.3.2 Higher Degree Relationships

The Reference relationship in Figure 9-6 is a binary relationship; that is, it is defined
by two roles. The Relationship Service can also support relationships with more than
two roles. The fact that three or more related objects may be part of a relationship can
be expressed directly by means of the same concept as in the binary case. The degree
represents the number of roles in a relationship. The Relationship Service supports
higher degree relationships, that is relationships with degree greater than two.

Figure 9-8 shows a ternary “check out” relationship between books, libraries and
persons. The semantics of this relationship is that a person borrows a book from a
library. The relationship also defines an attribute that indicates the date when the book
is due to be returned by the person to the library.

Figure9-8 A ternary check-out relationship type between books, libraries and persons.

Rationale

The Relationship Service represents higher degree relationships directly. It clearly
defines the number of expected related objects as well as other integrity constraints. It
is more readable, more understandable and easier to enforce consistency constraints for
related objects with a direct representation than with alternative representations that
simulate higher degree relationships using a set of binary relationships. When

Book

Person

material role

borrower role

check_out relationship
attribute due_dateLibrary

lender role

9-16 CORBAservices: Common Object Services Specification

9

simulating higher degree relationships, the relationship information is spread over
multiple object and relationship type definitions, as are the corresponding integrity
constraints.

Figure 9-9 shows an alternative representation of the ternary relationship from
Figure 9-8 using binary relationships. Note that the first representation is not
equivalent to that of Figure 9-8 since cardinalities and other integrity constraints
cannot be expressed correctly in this alternative representation.

Figure9-9 An unsatisfactory representation of the ternary check-out relationship using binary
relationships.

Figure 9-10 illustrates a second alternative representation of the ternary relationship of
Figure 9-8. It uses an additional (artificial) related object type. This representation is
equivalent to Figure 9-8 if Check-out is constrained to participate in exactly one
instance of each of the three binary relationship types. However, this alternative needs
three relationship types and one additional related object type (Check-out) instead of
only one relationship type, and therefore is much more complex and harder to capture
when compared to the representation using one relationship type with degree 3.

Figure9-10 Another unsatisfactory representation

Book

Library Person

Book

Library Person

Check_out

Relationship Service: v1.0 The Base Relationship Model March 1995 9-17

9

Since the Relationship Service supports higher order relationships directly, the user of
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 9-9 and Figure 9-10.

9.3.3 Operations

The base level of the Relationship Service provides operations to:

• Create role and relationship objects

• Navigate relationships

• Destroy roles and relationships

• Iterate over the relationships in which a role participates

Creation

Roles are constructed independently using a role factory. Roles represent an existing
related object that is passed as a parameter to the RoleFactory::create
operation. When creating a new role object, the type of the related object can be
checked by the factory. The minimum and maximum cardinality, e.g. the minimal and
the maximal number of relationship instances to which the new role object may be
connected, are indicated by attributes on the factory.

Figure 9-11 illustrates a newly created role.

Figure9-11 Creating a role for an object

A new relationship is created by passing a sequence of named roles to a factory for the
relationship. The expected degree and role types for the new relationship are indicated
by attributes on the factory. During the creation of the new relationship, the role types
and the maximum cardinality can be checked. Duplicate role names are not allowed
since the names are used to distinguish the roles in the scope of the relationship.

When creating a relationship, the factory creates “links” between the roles and the
relationship using the link operation on the role.

Figure 9-12 illustrates a fully established binary relationship.2

Figure9-12 A fully established binary relationship

Object

figuredocument

9-18 CORBAservices: Common Object Services Specification

9

Navigation

Figure 9-12 illustrates the navigational functionality of a relationship. In particular,

• a relationship defines an attribute that indicates a read-only attribute that indicates
the named roles of the relationship,

• a role defines a read-only attribute that indicates the related object that the role
represents,

• A role supports the get_other_role operation, that given a relationship
object and a role name, returns the other role object,

• A role supports the get_other_related_object operation, that given a
relationship object and a role name, returns the related object that the named role
represents in the relationship and

• A role supports the get_relationships operation which returns the
relationships in which the role participates.

Destruction

For both roles and relationship objects, the Relationship Services introduces a
destroy operation. The destroy operation for relationship objects also destroys the
links between the relationship and all of the role objects.

9.3.4 Consistency Constraints

For each role two cardinalities are defined: minimum and maximum.

• The minimum cardinality indicates the minimum number of relationship instances
in which a role must participate.

• The maximum cardinality indicates the maximum number of relationship instances
in which a role can participate.

Maximum cardinality constraint can be checked when relationships are created. Note
that the relationship mechanism cannot, by itself, enforce the minimum cardinality
constraint. However, a role can be asked explicitly if it meets its minimum cardinality
constraint using the check_minimum_cardinality operation.

Type integrity is preserved by CORBA mechanisms because related objects, roles and
relationships are instances of CORBA object types. Type constraints can be checked
when roles and relationships are created.

2.Figure9-12 represents navigation functionality; it does not necessarily represent stored object
references. A variety of implementation strategies are described in section 9.3.5.

Relationship Service: v1.0 The Base Relationship Model March 1995 9-19

9

9.3.5 Implementation Strategies

 9-12 illustrates the navigational functionality of a fully established binary relationship.
There are a variety of implementation strategies possible. The get_other_role and
the get_other_related_object operations can be:

• Implemented by caching object references to other roles and related objects, or

• Computed when needed using the relationship object.

The appropriate implementation strategy typically depends on distribution boundaries.
If the roles and relationship objects are clustered, then only storing the values at the
relationship object optimizes space. If, on the other hand, the roles and the related
objects are clustered, caching object references to other roles and related objects at the
roles allows the relationship to be efficiently navigated without involving a remote
relationship object.

Role implementations that cache object references to other roles and related objects
need not worry about updating the cache. Once the related objects and relationships are
established, they cannot be changed.

9.3.6 The CosObjectIdentity Module

CORBA: Common Object Request Broker Architecture and Specification does not
define a notion of object identity for objects. The Relationship Service requires object
identity for the objects it defines. As such, the Relationship Service assumes the
CosObjectIdentity module specified in Figure 9-13 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

The IdentifiableObject Interface

Objects that support the IdentifiableObject interface implement an attribute of type
ObjectIdentifier and the is_identical operation. This mechanism provides an
efficient and convenient method of supporting object identity in a heterogeneous
CORBA-based environment.

module CosObjectIdentity {

typedef unsigned long ObjectIdentifier;

interface IdentifiableObject {
readonly attribute ObjectIdentifier constant_random_id;
boolean is_identical (

in IdentifiableObject other_object);
};

};

Figure9-13 The CosObjectIdentity Module

9-20 CORBAservices: Common Object Services Specification

9

constant_random_id

Objects supporting the IdentifiableObject interface define an attribute of type
ObjectIdentifier. The value of the attribute must not change during the lifetime of the
object.

A typical client use of this attribute is as a key in a hash table. As such, the more
randomly distributed the values are, the better.

The value of this attribute is not guaranteed to be unique; that is, another identifiable
object can return the same value. However, if objects return different identifiers,
clients can determine that two identifiable objects are not identical.

To determine if two identifiable objects are identical, the is_identical operation
must be used.

is_identical

The is_identical operation returns true if the object and the other_object are
identical. Otherwise, the operation returns false.

9.3.7 The CosRelationships Module

The CosRelationships module defines the interfaces of the base level Relationship
Service. In particular, it defines

• Relationship and Role interfaces to represent relationships and roles,

• RelationshipFactory and RoleFactory interfaces to create relationships and roles

• RelationshipIterator interface to enumerate the relationships in which a role
participates

readonly attribute ObjectIdentifier constant_random_id;

boolean is_identical (
in IdentifiableObject other_object);

Relationship Service: v1.0 The Base Relationship Model March 1995 9-21

9

The CosRelationships module is shown in Figure 9-14.

#include <ObjectIdentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;
interface RelationshipIterator;

typedef Object RelatedObject;
typedef sequence<Role> Roles;
typedef string RoleName;
typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {
Relationship the_relationship;
CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {
struct NamedRoleType {

RoleName name;
::CORBA::InterfaceDef named_role_type;

};
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

};

Figure9-14 The CosRelationships Module

9-22 CORBAservices: Common Object Services Specification

9

interface Relationship :
CosObjectIdentity::IdentifiableObject {

exception CannotUnlink {
Roles offending_roles;

};
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

};

interface Role {
exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {

RelationshipHandles offenders;
};
exception ParticipatingInRelationship {

RelationshipHandles the_relationships;
};
readonly attribute RelatedObject related_object;

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
void get_relationships (

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);

void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,

in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,

RelationshipTypeError);
void unlink (in RelationshipHandle rel)

raises (UnknownRelationship);
};

interface RoleFactory {
exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute ::CORBA::InterfaceDef role_type;

Figure9-14 The CosRelationships Module (Continued)

Relationship Service: v1.0 The Base Relationship Model March 1995 9-23

9

Example of Containment Relationships

The example of Figure 9-15 is referred to throughout the following sections to describe
roles and relationships. The figure represents two binary, one-to-many containment
relationships between a document and a figure and a logo.

Figure9-15 Two binary one-to-many containment relationships.

The RelationshipFactory Interface

The RelationshipFactory interface defines an operation for creating an instance of a
relationship among a set of related objects. The factory also defines two attributes that
specify the degree and role types of the relationships it creates.

readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence

<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)

raises (NilRelatedObject, RelatedObjectTypeError);
};

interface RelationshipIterator {
boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,

out RelationshipHandles rels);
void destroy ();

};

};

Figure9-14 The CosRelationships Module (Continued)

figure

logo

document

relationship B

relationship D

ContainedInRole A

ContainsRole C

ContainedInRole E

9-24 CORBAservices: Common Object Services Specification

9

Creating a Relationship

The create operation creates a new instance of a relationship. The factory is passed
a sequence of named roles that represent the related objects in the newly created
relationship. The factory, in turn, informs the roles about the new relationship using
the link operation described in section .

Roles implement maximum cardinality constraints. A role may refuse to participate in
a new relationship because it would violate a cardinality constraint. In such a case, the
MaxCardinalityExceeded exception is raised and the offending roles are
returned in the exception.

The number of roles passed to the create operation must be the same as the value of
the degree attribute. If not, the DegreeError exception is raised.

Role names are used to associate each actual role object with one of the formal roles
expected by the relationship to be created.

The set of role names passed to the create operation must be the same as the set of
role names in the factory’s named_role_types attribute. If not, the
UnknowRoleName exception is raised, and the unrecognized names are returned in
the exception. The sequence order of the named_roles parameter and the sequence
order of the named_role_types need not correspond.

The type of each role passed to the create operation must be of the same type as the
type indicated for the corresponding role name in the named_role_types attribute.
If not, the RoleTypeError is raised and the offending roles are returned in the
exception.

The names of the roles passed to the create operation must be unique within the
scope of this relationship type. If not, the DuplicateRoleName exception is raised.

Example of Figure 9-15

The document and the figure were related, that is relationship B was created, by
passing roles A and C to the create operation of the relationship factory. Similarly,
the document and the logo were related by passing roles C and E to the relationship
factory for relationship D.

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

Relationship Service: v1.0 The Base Relationship Model March 1995 9-25

9

Determining the Created Relationship’s Type

The relationship created by a factory may be a subtype of the Relationship interface.
The rrelationship_type attribute indicates the actual types of the relationships
created by the factory.

Determining the Degree of a Relationship Type

The degree attribute indicates the number of roles for the relationships created by the
factory.

Example of Figure 9-15

The relationship factory for containment has a degree attribute whose value is 2
because containment is a binary relationship.

Determining Names and Types of the Roles of a Relationship Type

The named_role_types attribute indicates the required names and types of roles
for the relationships created by the factory. NamedRoleTypes are defined as structures
where the role type is given by the CORBA::InterfaceDef for the role objects.

Example of Figure 9-15

The relationship factory for containment has an attribute whose value is a sequence of
two CORBA::InterfaceDefs: one for ContainsRole and one for ContainedInRole.

The Relationship Interface

The Relationship interface defines an attribute whose value is the named roles of the
relationship and an operation to destroy the relationship.

readonly attribute ::CORBA::InterfaceDef relationship_type;

readonly attribute unsigned short degree;

readonly attribute NamedRoleTypes named_role_types;

9-26 CORBAservices: Common Object Services Specification

9

Determining the Roles of a Relationship and Their Names

The named_roles attribute returns the roles of the relationship. The roles have the
names that were indicated in the create operation defined by the
RelationshipFactory interface.

Example of Figure 9-15

Relationship B has an attribute whose value is a sequence <“A”,InterfaceDef for
ContainedInRole; “C”, InterfaceDef for ContainsRole>. Similarly, relationship D has
an attribute whose value is a sequence <“E”, InterfaceDef for ContainedInRole; “C”,
InterfaceDef for ContainsRole>.

Destroying a Relationship

The destroy operation destroys the relationship between the objects. The roles are
unlinked by the relationship implementation before it is destroyed. If roles cannot be
unlinked, the CannotUnlink exception is raised and the roles that could not be
unlinked are returned in the exception.

Example of Figure 9-15

If destroy is requested of relationship B, the unlink operation is requested of both
roles A and C and the relationship B is destroyed.

The Role Interface

The Role interface defines operations to:

• navigate the relationship from one role to another,

• enumerate the relationships in which the role participates,

• destroy all relationships in which the role participates,

• link a role to a newly created relationship and

• unlink a role in the destruction process of a relationship and

• destroy the role itself,

readonly attribute NamedRoles named_roles;

void destroy () raises(CannotUnlink);

Relationship Service: v1.0 The Base Relationship Model March 1995 9-27

9

Determining the Related Object That a Role Represents

The related_object attribute indicates the related object that the role represents.
The related object that the role represents is specified as a parameter to the create
operation defined by the RoleFactory interface.

Getting Another Related Object

The get_other_related_object operation navigates the relationship rel to the
related object represented by the role named target_name.

If the role does not know about a role named target_name, the
UnknownRoleName exception is raised. If the role does not know about the
relationship rel, the UnknownRelationship exception is raised.

Example of Figure 9-15

Assuming role A is named “A”, requesting
get_other_related_object(B,”A”) of role C returns the figure. On the other
hand, requesting get_other_related_object(D,”E”) of role C returns the
logo.

Getting Another Role

The get_other_role operation navigates the relationship rel to the role named
target_name. The role is returned.

If the role does not know about a role named target_name for the relationship rel,
the UnknownRoleName exception is raised. If the role does not know about the
relationship rel, the UnknownRelationship exception is raised.

readonly attribute RelatedObject related_object;

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);

9-28 CORBAservices: Common Object Services Specification

9

Example of Figure 9-15

Assuming role A is named “A”, requesting get_other_role(B,”A”) of role C
returns role A. On the other hand, requesting get_other_role(D,”E”) of role C
returns role E.

Getting All Relationships in Which a Role Participates

The get_relationships operation returns the relationships in which the role
participates.

The size of the list is determined by the how_many argument. If there are more
relationships than specified by the how_many argument, an iterator is created and
returned with the additional relationships. If there are no more relationships, a nil
object reference is returned for the iterator. (The RelationshipIterator interface is a
standard iterator described in the next section.)

Example of Figure 9-15

Requesting get_relationships on role C would return the relationships B and D.

Destroying All Relationships in Which a Role Participates

The destroy_relationships operation destroys all relationships in which the role
participates.

The destroy_relationships operation is semantically equivalent to requesting
destroy of each relationship in which the role participates. The operation is not required
to be implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationships,
then the CannotDestroyRelationship exception is raised and the relationships
that could not be destroyed are returned in the exception.

Example of Figure 9-15

Requesting destroy_relationships of role A causes relationship B to be
destroyed. On the other hand, requesting destroy_relationships of role C
causes relationships B and D to be destroyed.

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);

Relationship Service: v1.0 The Base Relationship Model March 1995 9-29

9

Destroying a Role

The destroy operation destroys the role. The role must not be participating in any
relationships. If it is, the ParticipatingInRelationship exception is raised and the
relationships in which the role participates are returned in the exception.

Example of Figure 9-15

Requesting destroy_role of role A destroys relationship B and role A.

Checking Minimum Cardinality of a Role

The check_minimum_cardinality operation returns true if a role satisfies its
minimum cardinality constraints. Otherwise, the operation returns false.

Example of Figure 9-15

Requesting check_minimum_cardinality of role A would return true since it is
participating in relationship B.

Linking a Role in a Newly Created Relationship

Note – The link operation is not intended for general purpose clients that create,
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship factory create operation.

The link operation informs the role that a new relationship is being created. The role
is passed a relationship and a set of named roles that represent related objects in the
relationship.

A role can have a maximum cardinality, that is it may limit the number of relationships
in which it participates. If the link request would cause the maximum to be exceeded,
the MaxCardinalityExceeded exception is raised. If the type of the relationship
does not agree with the relationship type that the role expects, the
RelationshipTypeError exception is raised.

void destroy() raises(ParticipatingInRelationship);

boolean check_minimum_cardinality ();

void link (in RelationshipHandle rel,
in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);

9-30 CORBAservices: Common Object Services Specification

9

Example of Figure 9-15

When creating relationship B, the factory for B requested the link (B, A,C) operation
on roles A and C. This allows roles A and C to support the navigation and
administration operations for relationship B.

Removing a Role from a Relationship

Note – The unlink operation is not intended for general purpose clients that create,
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship destroy operation.

The unlink operation causes the role to delete its record of the relationship.

If the relationship passed as an argument is unknown to the role, the
UnknownRelationship exception is raised.

Example of Figure 9-15

The implementation of the destroy operation on relationship B requests
unlink(B) of roles A and C. This causes roles A and C to forget their participation
in relationship B.

The RoleFactory Interface

The RoleFactory interface defines attributes describing the roles that it creates and a
single operation to create a role.

Creating a Role

The create_role operation creates a role for the related object passed as a
parameter.

A role must represent a related object. If a nil object reference is passed to the factory
for the related object, the NilRelatedObject exception is raised.

Role factories can restrict the type of objects the roles they create will represent. If the
interface of the related object does not conform, the RelatedObjectTypeError
exception is raised.

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

Relationship Service: v1.0 The Base Relationship Model March 1995 9-31

9

Example of Figure 9-15

Clients that created roles A, C and E used the create operation of factories that
support the RoleFactory interface.

Determining the Created Role’s Type

The role created by a factory may be a subtype of the Role interface. The role_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

The max_cardinality attribute indicates the maximum number of relationships in
which a role (created by the factory) participates.

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role can be in no more than one
relationship. Attempts to add role A to more than one relationship result in
MaxCardinalityExceeded exceptions. (See the create operation of the
RelationshipFactory interface and the link operation of the Role interface.)

Determining the Minimum Cardinality of a Role

The min_cardinality attribute indicates the minimum number of relationships in
which a role (created by the factory) participates.

Note, that unlike maximum cardinality, minimum cardinality cannot be enforced since
roles will be below their minimum during relationship construction. Roles do support
the check_minimum_cardinality operation to report if they are below their
minimum.

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role should be in one
relationship.

readonly attribute ::CORBA::InterfaceDef role_type;

readonly attribute unsigned long max_cardinality;

readonly attribute unsigned long min_cardinality;

9-32 CORBAservices: Common Object Services Specification

9

Determining the Related Object Types for a Role

The factory creates roles that represent related objects in relationships. The related
objects must support at least one of the interfaces indicated by the
related_object_type attribute.

Example of Figure 9-15

The factory for role C returns the CORBA::InterfaceDef for a document.

The RelationshipIterator Interface

The RelationshipIterator interface is returned by the get_relationships
operation defined by the Role interface. It allows clients to iterate through any
additional relationships in which the role participates.

next_one

The next_one operation returns the next relationship; if no more relationships exist,
it returns false.

next_n

The next_n operation returns at most the requested number of relationships; if no
more relationships exist, it returns false.

destroy

The destroy operation destroys the iterator.

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

boolean next_one (out RelationshipHandle rel);

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

void destroy ();

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-33

9

9.4 Graphs of Related Objects

When objects are related using the Relationship Service, graphs of related objects are
formed. This section focuses on how the Relationship Service supports graphs of
related objects. We first describe the graph architecture supported by the service,
describe support for traversing the graph and implementing compound operations and
then specify the CosGraphs module in detail.

Graphs are important for distributed, object-oriented applications. A few examples of
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain some objects and
reference others. Folders may contain or reference other folders. The objects are
distributed; they span multiple machines. The distributed desktop is a distributed
graph.

Composed Applications

Applications are built out of existing objects that are connected together. An
example of such a composed application is a shared white board. The composed
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contain other
presentation objects. For example, a window might contain a button. The user
interface hierarchy is a graph.

Compound Documents

A compound document architecture allows graphics, animation, sound, video, etc.
to be connected together to give the user the impression of a single document. The
compound document is a graph.

9.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are related
objects that support the Node interface and edges are represented by the relationships
that relate nodes.

Figure 9-3 on page 9-9 illustrates an example of a graph.

9-34 CORBAservices: Common Object Services Specification

9

Figure9-16 An example graph of related objects.

The folder, book, document, figure, library, person and logo are nodes in the graph.
The edges of the graph are represented by the relationships:

• containment: the folder and document,

• containment: the document and the figure

• containment: the document and the logo

• reference: the figure and the logo

• reference: the document and the book,

• check_out: the book, the library and the person

The graph architecture supports multiple kinds of relationships. For example, in
Figure 9-3, there are containment, reference and check_out relationships. The small
circles depict roles for a reference relationship, the solid circles depict roles for a
containment relationship and the shaded circles represent the roles of the check_out
relationship.

A node can participate in more than one kind of relationship and thus have more than
one role. In the example the document has three kinds of roles:

• The ContainsRole
• The ContainedInRole
• The ReferencesRole

figure

logo

folder

person

library

document

book

containment

reference

check_out

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-35

9

Nodes

Nodes are identifiable objects that support the Node interface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of graphs
of related objects because it supports the following:

• A readonly attribute defining all of its roles

• An operation allowing roles of a particular type to be returned

• Operations to add and remove roles

The Node interface can be inherited by related objects or an object implementing the
Node interface can be instantiated and interposed in front of related objects.
Interposition is particularly useful in these cases:

• When connecting immutable objects, which are objects that are not aware of the
Relationship Service

• In order to traverse graphs of related objects without activating the related objects

As such, the Node interface defines an attribute whose value is the related object it
represents.

9.4.2 Traversing Graphs of Related Objects

The Relationship Service defines a traversal object that, given a starting node,
produces a sequence of directed edges of the graph. A directed edge corresponds to a
relationship. In particular, it consists of:

• An instance of a relationship,

• A starting node and a starting named role of the edge to indicate direction and

• A sequence containing the remaining nodes and named roles. For binary
relationships, there is a single remaining node and role. For n-ary relationships,
there are n-1 remaining nodes and roles.

The traversal object works like an iterator, where directed edges are the items being
returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Through
the operations of the Node interface, the node reveals its roles to the traversal object.
Through the operations of the CosGraphs::Role interface, a role reveals its directed
edges to other nodes. (The CosGraphs::Role interface defines an operation allowing a
role to reveal directed edges.)

In traversing a graph, the traversal object must detect and represent cycles, and
determine the relevant nodes and edges.

Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In the
example of 9-3, the document, the figure, and the logo form a cycle.

9-36 CORBAservices: Common Object Services Specification

9

To detect cycles in the graph, the traversal object depends on the fact that nodes are
identifiable objects, that is they support the IdentifiableObject interface defined in
section 9.3.6.

To represent cycles in the graph, the traversal object defines a scope of identifiers for
the nodes and relationships in the graph. That is, a given traversal assigns identifiers to
the nodes and relationships that are guaranteed to be unique within the scope of the
traversal.

Determining the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edges and may continue to other
related nodes. The traversal object is programmable in the criteria it uses for
determining the edges to emit and the nodes to visit. The traversal object depends on a
“call-back” object supporting the TraversalCriteria interface.

Given a node, the traversal criteria computes a sequence of directed edges to include in
the traversal. For each edge, the traversal criteria can indicate whether the traversal
should continue to an adjacent node. Based on the results of the traversal criteria, the
traversal object emits edges and visits other nodes. The process continues until there
are no more edges to emit and no more nodes to visit.

Three standard traversal modes are defined to allow clients flexibility in controlling the
search order: depth first, breadth first, and best first. In order to understand the
differences between the modes, consider that the traversal maintains an ordered list of
the edges which have been produced by visiting nodes. This list initially contains the
edges which result from visiting the root node. In each iteration the first edge is
removed from the list to be returned and its destination nodes are visited. Depending
upon the traversal mode, these edges are: inserted in the beginning of the list (depth
first), appended to the end of the list (breadth first), or inserted into the list which is
sorted by the edge’s weight (best first).

9.4.3 Compound Operations

Traversal objects are especially important in implementing compound operations on
graphs of related objects. By compound operations, we mean operations that apply to
some subset of the nodes and edges in the graph. Examples of compound operations
include operations, such as copy, move, remove, externalize, print, and so forth.

Note – The Relationship Service defines a framework for compound operations but
does not define specific compound operations. The Life Cycle and the Externalization
Service specifications define compound operations that depend on the Relationship
Service.

A compound operation may be implemented either in one or two passes. A compound
operation implemented in one pass traverses the graph itself and applies the operation
as it proceeds.

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-37

9

A compound operation implemented in two passes uses the traversal object defined by
the Relationship Service to determine the relevant nodes and detect and represent
cycles. The second pass simply applies the operation to the results of the first pass.

A compound operation implemented in two passes provides a TraversalCriteria object
for the traversal service.

9.4.4 An Example Traversal Criteria

Consider a traversal of a graph with a traversal criteria object that uses propagation
values defined by the relationships to determine whether to emit an edge and whether
to proceed to another node. The traversal criteria is given a node by the traversal. The
traversal criteria then requests propagation values from each of the node’s roles.

Figure 9-17 illustrates a traversal of a graph using a traversal criteria for a compound
copy operation. Using the propagation_for operation defined by
CompoundLifeCycle::Role interface, the traversal criteria obtains the propagation value
for the copy operation from each of the node’s roles.

Figure9-17 A traversal of a graph for compound copy operation.

Propagation

Compound operations may propagate from one node to another depending on the
semantics of the relationship between the nodes. The propagation semantics of a
relationship depend on the direction the relationship is being traversed. A propagation
value is either deep, shallow, inhibit or none.

Deep means that the operation is applied to the node, to the relationship and to the
related objects. In the example of Figure 9-17, the propagation value for the copy
operation is deep from the document to the logo; the copy propagates from the
document to the logo across the containment relationship. The traversal criteria for
copy that encounters a deep propagation value would instruct the traversal object to
emit the edge and visit the logo.

Shallow means that the operation is applied to the relationship but not to the related
objects. In the example of Figure 9-17, the propagation value for the copy operation
from the logo to the document is shallow. The traversal criteria for copy that
encounters a shallow propagation value would instruct the traversal object to emit the
edge but the document is not visited.

document logo
Node

Role

TraversalCriteria

copy=deep

Node

Role

copy=shallow

9-38 CORBAservices: Common Object Services Specification

9

None means that the operation has no effect on the relationship and no effect on the
related objects. A traversal criteria that encounters a none propagation value would not
return any edges and related nodes are not visited.

Figure 9-18 summarizes how deep, shallow and node propagation values affect nodes,
roles and relationships.

Figure9-18 How deep, shallow and none propagation values affect nodes, roles and
relationships.

Inhibit means that the operation should not propagate to the node via any of the node’s
roles. Inhibit is particularly meaningful for the remove operation to provide so-called
“existence-ensuring relationships”.

For more discussion of propagation values, see [1].

9.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It defines the
following interfaces:

• TraversalFactory interface for creating traversal objects

• Traversal interface for enumerating directed edges of a graph,

• TraversalCriteria “call-back” interface to allow programmability of the traversal
object

• Node interface for collecting the roles of a related object

• NodeFactory interface for creating nodes

• Role interface to support traversals

shallow

deep

none

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-39

9

The CosGraphs module is shown in Figure 9-14.

#include <Relationships.idl>
#include <ObjectIdentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal;
interface TraversalCriteria;
interface Node;
interface NodeFactory;
interface Role;
interface EdgeIterator;

struct NodeHandle {
Node the_node;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships::RoleName the_name;

};
typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;

};
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (

in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

};

Figure9-19 The CosGraphs Module

9-40 CORBAservices: Common Object Services Specification

9

interface Traversal {
typedef unsigned long TraversalScopedId;
struct ScopedEndPoint {

EndPoint point;
TraversalScopedId id;

};
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {

::CosRelationships::RelationshipHandle
scoped_relationship;

TraversalScopedId id;
};
struct ScopedEdge {

ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,

out ScopedEdges the_edges);
void destroy ();

};

interface TraversalCriteria {
struct WeightedEdge {

Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,

in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,

out WeightedEdges the_edges);
void destroy();

};

Figure9-19 The CosGraphs Module (Continued)

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-41

9

The TraversalFactory Interface

The TraversalFactory interface creates traversal objects. The Traversal interface is
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

interface Node: ::CosObjectIdentity::IdentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;
Roles roles_of_type (

in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)

raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of_type)

raises (NoSuchRole);
};

interface NodeFactory {
Node create_node (in Object related_object);

};

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out EdgeIterator the_rest);

};

interface EdgeIterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,

out Edges the_edges);
void destroy ();

};

};

Figure9-19 The CosGraphs Module (Continued)

9-42 CORBAservices: Common Object Services Specification

9

create_traversal_on

The create_traversal_on operation creates a traversal object starting at the
root_node. The created traversal object uses the TraversalCriteria object to
determine which directed edges to emit and which nodes to visit. The mode parameter
indicates whether the traversal will proceed in a depth first, breadth first or best first
fashion.

The Traversal Interface

Traversal objects iterate through ScopedEdges of the graph according to the
traversal criteria and the mode established when the traversal was created. The
traversal also defines a scope for the nodes and edges it returns; that is, it assigns
identifiers to the nodes and edges it returns. The identifiers are unique within the scope
of a given traversal. ScopedEdges are given by the following structure:

A ScopedEdge consists of a distinguished scoped end point, a scoped relationship
and a sequence of scoped end points. The distinguished scoped end point indicates the
direction of the edge. The scoped end point consists of a node, a role, and an identifier
for the node that is unique within the scope of the traversal.

next_one

The next_one operation returns the next scoped edge; if no more scoped edges exist,
it returns false.

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;

boolean next_one (out ScopedEdge the_edge);

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-43

9

next_n

The next_n operation returns at most the requested number of scoped edges.

destroy

The destroy operation destroys the traversal.

The TraversalCriteria Interface

The TraversalCriteria interface is used by the traversal object to determine which
edges to emit and which nodes to visit from a given node. The traversal criteria
behaves like an iterator of weighted edges. Weighted edges are given by the following
structure:

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicating if
the traversal should continue to the nodes. The weight is only meaningful for the best
first traversal.

next_one

The next_one operation returns the next weighted edge; if no more weighted edges
exist, it returns false.

boolean next_n (in short how_many,
out ScopedEdges the_edges);

void destroy ();

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;

boolean next_one (out WeightedEdge the_edge);

9-44 CORBAservices: Common Object Services Specification

9

next_n

The next_n operation returns at most the requested number of weighted directed
edges.

destroy

The destroy operation destroys the traversal criteria.

visit_node

The visit_node operation establishes the node for which the traversal criteria will
iterate and indicates the current search mode. As the traversal object traverses the
graph, it visits nodes by requesting the visit_node operation of the traversal
criteria, followed by next_one/next_n requests to obtain the outgoing edges from
the node.

For depthFirst and breadthFirst modes, the weight field in the weighted edges is
ignored. In the bestFirst mode, the weight value is utilized to order the traversal’s
edges list which is sorted by this value in ascending order.

If weighted edges from a previous node remain when visit_node is requested, the
traversal criteria discards the previous edges.

The Node Interface

The Node interface defines operations that are useful in navigating graphs of related
objects. In particular, it defines:

• Areadonly attribute giving all of the node’s roles

• An operation allowing roles conforming to a particular type to be returned

• Operations to add and remove roles

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by the add_role operation.

boolean next_n (in short how_many,
out WeightedEdges the_edges);

void destroy();

void visit_node(in NodeHandle a_node,
in Mode search_mode);

Relationship Service: v1.0 Graphs of Related Objects March 1995 9-45

9

A node can posses two or more roles that have a common supertype. The set of roles
can be obtained by passing the common supertype to the roles_of_type operation.

related_object

The related_object attribute gives the related object that the node represents.
This is useful when relating immutable objects.

roles_of_node

The roles_of_node attribute gives all of the node’s roles.

roles_of_type

The roles_of_type operation returns the node’s roles that conform to the
role_type parameter. A role conforms to role_type if it’s interface is the same
or is a subtype of role_type.

add_role

The add_role operation adds a role to the node. If the node posses a role of the same
type, a supertype or a subtype of a_role, the DuplicateRoleType exception is
raised.

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;

Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);

void add_role (in Role a_role)
raises (DuplicateRoleType);

9-46 CORBAservices: Common Object Services Specification

9

remove_role

The remove_role operation removes all the roles that conform to the of_type
parameter. If no roles conform to the of_type parameter, the NoSuchRole exception
is raised.

The NodeFactory Interface

The NodeFactory interface defines a single operation for creating nodes.

create_node

The create_node operation creates a node whose related_object attribute is
initialized to the related_object parameter.

The Role Interface

The CosGraphs::Role interface extends the CosRelationships::Role interface with a
single operation to return a role’s view of it’s relationships. The role’s view of a
relationship is given by the following Edge structure:

The edge structure is defined by an end point, a relationship and the other end points.
The from end point is the role and its related object.

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

Node create_node (in Object related_object);

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

Relationship Service: v1.0 Specific Relationships March 1995 9-47

9

get_edges

The get_edges operation returns the edges in which the role participates.

The size of the list is determined by the how_many argument. If there are more edges
than specified by the how_many argument, an iterator is created and returned. If there
are no more edges, a nil object reference is returned for the iterator.

The EdgeIterator Interface

The EdgeIterator interface is returned by the get_edges operation defined by the
CosGraphs::Role interface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

The next_one operation returns the next edge; if no more edges exist, it returns
false.

next_n

The next_n operation returns at most the requested number of edges.

destroy

The destroy operation destroys the iterator.

9.5 Specific Relationships

The Relationship Service defines two important relationships, containment and
reference as part of its specification. The example used throughout this specification
has been in terms of these two relationships.

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);

boolean next_one (out Edge the_edge);

boolean next_n (in unsigned long how_many,
out Edges the_edges);

void destroy ();

9-48 CORBAservices: Common Object Services Specification

9

9.5.1 Containment and Reference

Containment is a one-to-many relationship. A container can contain many containees;
a containee is contained by one container. Reference, on the other hand, is a many-to-
many relationship. An object can reference many objects; an object can be referenced
by many objects.

Containment and reference are examples of relationships. However, since containment
and reference are very common relationships, the Relationship Service defines them as
standard.

Containment is defined by interfaces for a relationship and two roles: the
CosContainment::Relationship interface, the CosContainment::ContainsRole interface,
and the CosContainment::ContainedInRole interface. Relationship is a subtype of
CosRelationships::Relationship and ContainedInRole and ContainsRole are subtypes
of CosGraphs::Role.

Similarly, reference is defined by interfaces for a relationship and two roles: the
CosReference::Relationship interface, the CosReference::ReferencesRole interface,
and the CosReference::ReferencedByRole interface. Relationship is a subtype of
CosRelationships::Relationship and ReferencesRole and ReferencedByRole are
subtypes of CosGraphs::Role.

9.5.2 The CosContainment Module

The CosContainment module is shown in Figure 9-14.

#include <Graphs.idl>

module CosContainment {

 interface Relationship :
 ::CosRelationships::Relationship {};

 interface ContainsRole : ::CosGraphs::Role {};

 interface ContainedInRole : ::CosGraphs::Role {};

};

Figure9-20 The CosContainment Module

Relationship Service: v1.0 Specific Relationships March 1995 9-49

9

The CosContainment module does not define new operations. It introduces new IDL
types to represent containment. Although it does not add any new operations, it refines
the semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosContainment::ContainsRole and
CosContainment::ContainedInRole. It will raise MaxCardinalityExceeded if the
CosContainment::ContainedInRole is already participating in a relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosContainment::Relationship interface. The

RelationshipFactory
attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole;
“ContainedInRole”,CosContainment::ContainedInRole

RoleFactory attribute for
ContainsRole value

role_type CosContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ContainedInRole value

role_type CosContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosGraphs::Node

9-50 CORBAservices: Common Object Services Specification

9

CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

9.5.3 The CosReference Module

The CosReference module is given in Figure 9-21.

The CosReference module does not define new operations. It introduces new IDL types
to represent reference. Although it does not add any new operations, it refines the
semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosReference::ReferencesRole and
CosReference::ReferencedByRole.

#include <Graphs.idl>

module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

};

Figure9-21 The CosReference Module

RelationshipFactory
attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole

Relationship Service: v1.0 References March 1995 9-51

9

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosRelationship::Relationship interface.

9.6 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296.

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

RoleFactory attribute for
ReferencesRole value

role_type CosReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

9-52 CORBAservices: Common Object Services Specification

9

